传说 |
---|
DVC托管文件 |
Git管理文件 |
度规 |
阶段文件 |
外部文件 |
传说 |
---|
DVC托管文件 |
Git管理文件 |
度规 |
阶段文件 |
外部文件 |
数据科学空缺:分析和推荐
使dirs
来创建下面描述的目录结构中缺失的部分。使virtualenv
创建一个python虚拟环境。如果使用conda或其他环境管理器,则跳过。源env / bin /激活
命令,激活virtualenv。使需求
安装所需的python包。数据/生
.提交raw_data.dvc
DVC repro . DVC
或使繁殖
├──LICENSE├──Makefile <-用“make dirs”或“make clean”这样的命令制作├──README. sound效果器md <-使用此项目的开发人员的顶级README。├──data│├──经整理的<-最终的、规范的建模数据集。│├──raw <-原始的、不可变的数据转储。│├──eval。"<- The end of the data pipeline - evaluates the trained model on the test dataset. │ ├── models <- Trained and serialized models, model predictions, or model summaries │ ├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering), │ the creator's initials, and a short `-` delimited description, e.g. │ `1.0-jqp-initial-data-exploration`. │ ├── process_data.dvc <- Process the raw data and prepare it for training. ├── raw_data.dvc <- Keeps the raw data versioned. │ ├── references <- Data dictionaries, manuals, and all other explanatory materials. │ ├── reports <- Generated analysis as HTML, PDF, LaTeX, etc. │ └── figures <- Generated graphics and figures to be used in reporting │ └── metrics.txt <- Relevant metrics after evaluating the model. │ └── training_metrics.txt <- Relevant metrics from training the model. │ ├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g. │ generated with `pip freeze > requirements.txt` │ ├── setup.py <- makes project pip installable (pip install -e .) so src can be imported ├── src <- Source code for use in this project. │ ├── __init__.py <- Makes src a Python module │ │ │ ├── data <- Scripts to download or generate data │ │ └── make_dataset.py │ │ │ ├── models <- Scripts to train models and then use trained models to make │ │ │ predictions │ │ ├── predict_model.py │ │ └── train_model.py │ │ │ └── visualization <- Scripts to create exploratory and results oriented visualizations │ └── visualize.py │ ├── tox.ini <- tox file with settings for running tox; see tox.testrun.org └── train.dvc <- Traing a model on the processed data.
项目基于Cookiecutter数据科学项目模板.# cookiecutterdatascience
新闻p或要查看以前的文件或,n或查看下一个文件